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GENERALIZATIONS OF MCSHANE’S IDENTITY TO

HYPERBOLIC CONE-SURFACES

Ser Peow Tan, Yan Loi Wong & Ying Zhang

Abstract

We generalize McShane’s identity for the length series of simple
closed geodesics on a cusped hyperbolic surface [19] to a gen-
eral identity for hyperbolic cone-surfaces (with all cone angles
≤ π), possibly with cusps and/or geodesic boundary. The general
identity is obtained by studying gaps formed by simple-normal
geodesics emanating from a distinguished cone point, cusp or
boundary geodesic. In particular, by applying the generalized
identity to the quotient orbifolds of a hyperbolic one-cone/one-hole
torus by its elliptic involution and of a hyperbolic closed genus two
surface by its hyperelliptic involution, we obtain general Weier-
strass identities for the one-cone/one-hole torus, and an identity
for the genus two surface, which are also obtained by McShane
using different methods in [20], [22] and [21]. We also give an
interpretation of the general identity in terms of complex lengths
of the cone points, cusps and geodesic boundary components.

1. Introduction

Greg McShane discovered in his thesis [18] the following striking iden-
tity.

Theorem 1.1 (McShane [18]). In a hyperbolic torus T ,

(1.1)
∑

γ

1

1 + exp |γ| =
1

2
,

where the sum extends over all simple closed geodesics on T and where
|γ| denotes the length of γ in the given hyperbolic structure.

Here, by a hyperbolic torus, we mean a once punctured torus equipped
with a complete hyperbolic structure of finite area, and throughout the
paper, we shall always use |γ| to denote the hyperbolic length of γ if
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γ is a (generalized) simple closed geodesic or a simple geodesic arc on
a hyperbolic (cone-)surface. All surfaces we consider in this paper are
assumed to be connected and orientable.

Later, in [19], McShane extended his identity to more general hyper-
bolic surfaces with cusps as follows.

Theorem 1.2 (McShane [19]). In a finite area hyperbolic surface M
with cusps and without boundary,

(1.2)
∑ 1

1 + exp 1

2
(|α| + |β|)

=
1

2
,

where the sum is taken over all unordered pairs of simple closed geodesics
α, β (where α or β might be a cusp treated as a simple closed geodesic
of length 0) on M such that α, β bound with a distinguished cusp point
an embedded pair of pants on M .

Note that Theorem 1.1 can be regarded as a special case of Theorem
1.2 where α, β are the same for each pair α, β.

In [20], McShane demonstrated three other closely related identities
for the lengths of simple closed geodesics in each of the three Weierstrass
classes on a hyperbolic torus. Recall that a hyperbolic torus T has
three Weierstrass points which are the fixed points of the unique elliptic
involution which maps each simple closed geodesic on T onto itself with
orientation reversed, and for a Weierstrass point x on T , the simple
closed geodesics in the Weierstrass class which is dual to x are precisely
all the simple closed geodesics on T which do not pass through x.

Theorem 1.3 (McShane [20]). In a hyperbolic torus T ,

(1.3)
∑

γ∈A

sin−1

(

1

cosh 1

2
|γ|

)

=
π

2
,

where the sum is taken over all simple closed geodesics in a given Weier-
strass class A on T .

On the other hand, Bowditch gave an alternative proof of Theorem
1.1 using Markoff triples [7] and extended the identity in Theorem 1.1 to
the case of quasi-Fuchsian representations of the torus group [9] as well
as to the case of hyperbolic once punctured torus bundles [8]. There
are also some other generalizations along these directions, by Makoto
Sakuma and his co-workers, see [1], [2], [24].

In this paper, we further generalize McShane’s identity as in The-
orem 1.2 to the cases of hyperbolic cone-surfaces possibly with cusps
and/or geodesic boundary. (See for example [11] for basic facts on
cone-manifolds.) We assume that all cone points have cone angle ≤ π
(except for the one-cone torus where we allow the cone angle up to 2π).
The ideas are related in spirit to those in [3] while the method of proof
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follows closely that of McShane’s in [19]. The key points are that the
assumption that all cone angles are ≤ π implies that all non-peripheral
simple closed curves are essentially realizable as simple geodesics in
their free (relative) homotopy classes; and that the Birman–Series re-
sult [6] on the sparsity of simple geodesics carries over to this case, in
particular to simple geodesic rays emanating (normally) from a fixed
boundary component. It should be noted that our result shows that
the assumption of discreteness of the holonomy group is unnecessary,
and that it gives identities for all hyperbolic orbifold surfaces. We also
show how the result can be formulated in terms of complex lengths
(Theorem 1.16) even though the situation we consider here is real. This
is particularly useful, and is explored further in [29] and [28], where
we show how this approach allows us to generalize McShane’s identity
to identities for marked classical Schottky groups, and how Bowditch’s
study of Markoff maps in [7] can be generalized as well to give identities
for certain generalized Markoff maps. (See also [13] for related work
on generalized Markoff triples.) This also leads to generalizations of
Bowditch’s interpretation [8] of McShane’s identity for complete hyper-
bolic 3-manifolds which are once punctured torus bundles over the circle
to identities for the hyperbolic 3-manifolds obtained by hyperbolic Dehn
surgery on such manifolds. This is explored in [28], and should tie up
nicely with the work of Sakuma in [24], and Akiyoshi–Miyachi–Sakuma
in [1] and [2].

To state the most general form of our generalized McShane’s iden-
tities, we need to introduce some new terminology. However, to let
the reader get the flavor of the generalized identities, we first state the
corresponding generalizations of Theorems 1.1 and 1.2.

Theorem 1.4. Let T be either a hyperbolic one-cone torus where the
single cone point has cone angle θ ∈ (0, 2π) or a hyperbolic one-hole
torus where the single boundary geodesic has length l > 0. Then, we
have respectively

∑

γ

2 tan−1

(

sin θ
2

cos θ
2

+ exp |γ|

)

=
θ

2
,(1.4)

∑

γ

2 tanh−1

(

sinh l
2

cosh l
2

+ exp |γ|

)

=
l

2
,(1.5)

where the sum in either case extends over all simple closed geodesics
on T .

Theorem 1.5. Let M be a compact hyperbolic cone-surface with a
single cone point of cone angle θ ∈ (0, π] and without boundary or let M
be a compact hyperbolic surface with a single boundary geodesic having
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length l > 0. Then, we have respectively

∑

2 tan−1

(

sin θ
2

cos θ
2

+ exp |α|+|β|
2

)

=
θ

2
,(1.6)

∑

2 tanh−1

(

sinh l
2

cosh l
2

+ exp |α|+|β|
2

)

=
l

2
,(1.7)

where the sum in either case extends over all unordered pairs of simple
closed geodesics on M which bound with the cone point (respectively, the
boundary geodesic) an embedded pair of pants.

For the purposes of this paper, we make the following definition.

Definition 1.6. A compact hyperbolic cone-surface M is a com-
pact (topological) surface M with hyperbolic cone structure where each
boundary component is a smooth simple closed geodesic and where there
are a finite number of interior points which form all the cone points and
cusps. Its geometric boundary, denoted ∆M , is the union of all
cusps, cone points and geodesic boundary components. (Note that ∆M
is different from the usual topological boundary ∂M when there are
cusps or cone points.) Thus, a geometric boundary component is
either a cusp, a cone point, or a boundary geodesic. The geometric

interior of M is M − ∆M .

In this paper, we consider a compact hyperbolic cone-surface M =
M(∆0; k,Θ, L) with k cusps C1, C2, . . . , Ck, with m cone points P1, P2,
. . . , Pm, where the cone angle of Pi is θi ∈ (0, π], i = 1, 2, . . . , m, and
with n geodesic boundary components B1, B2, . . . , Bn, where the length
of Bi is li > 0, i = 1, 2, . . . , n, together with an extra distinguished geo-
metric boundary component ∆0. Thus, ∆0 is either a cusp C0 or a cone
point P0 of cone angle θ0 ∈ (0, π] or a geodesic boundary component B0

of length l0 > 0. Note that in the above notation Θ = (θ1, θ2, . . . , θm)
and L = (l1, l2, . . . , ln). We exclude the case where M is a geometric
pair of pants for we have only trivial identities in that case.

We allow that some (even all) of the cone angles θi are equal to
π, i = 0, 1, . . . , m; these are often cases of particular interest. How-
ever, for clarity of exposition, quite often in proofs/statements of lem-
mas/theorems, we shall first consider the case where all the cone angles
are less than π and then point out the addenda that should be made
when there are angle π cone points. The advantage of this assumption of
strict inequality is that every non-trivial, non-peripheral simple closed
curve on such M can be realized as a (smooth) simple closed geodesic in
its free homotopy class in the geometric interior of M under the given
hyperbolic cone-structure (see Section 5 for the proof of this statement).

We call a simple closed curve on M peripheral if it is freely homotopic
on M to a geometric boundary component of M .
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Definition 1.7. By a generalized simple closed geodesic on M ,
we mean either

(i) a simple closed geodesic in the geometric interior of M ; or
(ii) a degenerate simple closed geodesic which is the double of a simple

geodesic arc in the geometric interior of M connecting two angle
π cone points; or

(iii) a geometric boundary component, that is, a cusp or a cone point
or a boundary geodesic.

In particular, generalized simple closed geodesics of the first two kinds
are called interior generalized simple closed geodesics.

For each unordered pair of generalized simple closed geodesics α, β
which bound with ∆0 an embedded geometric pair of pants, we shall
define a normalized gap function Gap′(∆0; α, β) when ∆0 is a cusp
(case 0 of Section 4), and a gap function Gap(∆0; α, β) when ∆0 is
a cone point or a boundary geodesic (cases 1 and 2 of Section 4). The
definitions are deferred to Section 4 as they are somewhat complicated
and depend on several subcases.

Now, we are in a position to state the most general (real) form of our
generalization of McShane’s identity.

Theorem 1.8. Let M be a compact hyperbolic cone-surface with all
cone angles in (0, π]. Then, one has either

∑

Gap(∆0; α, β) =
θ0

2
,(1.8)

when ∆0 is a cone point of cone angle θ0; or
∑

Gap(∆0; α, β) =
l0
2

,(1.9)

when ∆0 is a boundary geodesic of length l0; or
∑

Gap′(∆0; α, β) =
1

2
,(1.10)

when ∆0 is a cusp; where, in each case, the sum is taken over all un-
ordered pairs of generalized simple closed geodesics α, β on M which
bound with ∆0 an embedded pair of pants.

Remark 1.9.

(i) In the case of the hyperbolic one-cone torus, the theorem holds
for θ0 ∈ (0, 2π).

(ii) In the special cases where the geometric boundary ∆M is a single
cone point or a single boundary geodesic, Theorem 1.8 gives all
the previously stated generalized identities in Theorems 1.4 and
1.5.

(iii) We use the notation Gap′ for the function in the cusp case (that
is, ∆0 is a cusp) as it is the limit case of the other cases as the
cone angle θ0 or the boundary geodesic length l0 approaches 0,
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and so can be considered as the formal derivative of the function
Gap used in the first two cases, evaluated at θ0 = 0 or l0 = 0.
The identity in the cusp case can indeed be derived from the first
order infinitesimal of the identities of the other cases.

It is also interesting to note that McShane’s Weierstrass identities
can be deduced as special cases of our general Theorem 1.8 by applying
the theorem to the quotient of a hyperbolic one-cone/one-hole torus by
its elliptic involution and then lifting back to the torus. Thus, we have
the following generalized Weierstrass identities.

Corollary 1.10. Let T be either a hyperbolic one-cone torus where
the single cone point has cone angle θ ∈ (0, 2π) or a hyperbolic one-hole
torus where the single boundary geodesic has length l > 0. Then, we
have respectively

∑

γ∈A

tan−1

(

cos θ
4

sinh |γ|
2

)

=
π

2
,(1.11)

∑

γ∈A

tan−1

(

cosh l
4

sinh |γ|
2

)

=
π

2
,(1.12)

where the sum in either case is taken over all the simple closed geodesics
γ in a given Weierstrass class A.

McShane’s original Weierstrass identity (1.3) then corresponds to the
case θ = 0 or l = 0 in the above two identities, noticing that

tan−1

(

1

sinh |γ|
2

)

= sin−1

(

1

cosh |γ|
2

)

.

As further corollaries, there are the following weaker but neater iden-
tities, each of which is obtained by summing the three Weierstrass iden-
tities in the corresponding case.

Corollary 1.11. Let T be a hyperbolic torus whose geometric bound-
ary is either a single cusp, a single cone point of cone angle θ ∈ (0, 2π),
or a single boundary geodesic of length l > 0. Then, we have respectively

∑

γ

tan−1

(

1

sinh |γ|
2

)

=
3π

2
,(1.13)

∑

γ

tan−1

(

cos θ
4

sinh |γ|
2

)

=
3π

2
,(1.14)

∑

γ

tan−1

(

cosh l
4

sinh |γ|
2

)

=
3π

2
,(1.15)
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where the sum in each case is taken over all the simple closed geodesics
γ on T .

Remark 1.12. The identity (1.15) was also obtained by McShane
[21] using Wolpert’s variation of length method. It seems likely his
method can be extended to prove some of the other identities as well.

Similarly, for a genus two closed hyperbolic surface M , one can con-
sider the (six) identities on the quotient surface M/η where η is the
unique hyperelliptic involution on M (note that M/η is a closed hy-
perbolic orbifold of genus 0 with six cone angle π points, and we may
choose any one of these cone points to be the distinguished geometric
boundary component) and reinterpret them as Weierstrass identities on
the original surface M (see also McShane [22] where the Weierstrass
identities were obtained directly). Combining all the six Weierstrass
identities for M , we then have the following very neat identity.

Theorem 1.13. Let M be a genus two closed hyperbolic surface.
Then

∑

tan−1 exp

(

−|α|
4

− |β|
2

)

=
3π

2
,(1.16)

where the sum is taken over all ordered pairs (α, β) of disjoint simple
closed geodesics on M such that α is separating and β is non-separating.

Remark 1.14. This is the only case that we know of where Mc-
Shane’s identity extends in a nice way to a closed surface.

We observe that the above identity for closed genus two surface M
also extends to quasi-Fuchsian representations of π1(M). The space of
quasi-Fuchsian representations is well studied, and known to be con-
tractible and homeomorphic to R12g−12 for a closed surface of genus g.
For more details of the geometry and topology of the space of quasi-
Fuchsian representations, see for example [5] and [17].

Let ρ : π1(M) → PSL(2,C) be a quasi-Fuchsian representation. For
each essential simple closed curve γ, let lρ(γ) ∈ C, with positive real
part, be defined by

cosh(lρ(γ)) = 1

2
tr2ρ([γ]) − 1(1.17)

(where [γ] ∈ π1(M) is any homotopy class in the conjugacy classes up
to inversion in π1(M) corresponding to γ) and by analytic continua-
tion from the space of Fuchsian representations to the space of quasi-
Fuchsian representations. This is well-defined since the quasi-Fuchsian
space is contractible and each ρ([γ]) is a loxodromic or hyperbolic ele-
ment. Note that lρ(γ) is also called the complex length of ρ([γ]).
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Addendum 1.15. For a quasi-Fuchsian representation ρ : π1(M) →
PSL(2,C) for the closed genus two surface M , we have

∑

tan−1 exp
(

− lρ(α)

4
− lρ(β)

2

)

=
3π

2
,(1.18)

where the sum, which converges absolutely, is taken over all the ordered
pairs [α], [β] of free homotopy classes up to inversion of disjoint unori-
ented essential simple closed curves α, β on M such that α is separating
and β is non-separating.

Note that here and in the rest of the paper, the function tan−1 :
C\{±i} → C is defined by

tan−1 u =
1

2i
log

1 + ui

1 − ui
,(1.19)

where the log function assumes its main branch value, i.e., with imagi-
nary part in (−π, π]. Similarly, the function tanh−1 : C\{±1} → C is
defined by

tanh−1 u =
1

2
log

1 + u

1 − u
,(1.20)

where again the log function assumes its main branch value. Hence, it
is always true that

i tan−1 u = tanh−1(ui) for u 6= ±i.(1.21)

It is easy to check that if w ∈ C lies in the open unit disk, then

1 + w

1 − w
/∈ R≤0.

Thus, the above defined functions tan−1 and tanh−1 are analytic in the
open unit disk. Now, we have

∣

∣

∣
exp

(

− lρ(α)

4
− lρ(β)

2

) ∣

∣

∣
< 1

since ℜ lρ(α),ℜ lρ(β) > 0. It follows that each summand on the left-hand
side of (1.18) is an analytic function on the quasi-Fuchsian space of M
with no need for analytic continuation of the tan−1 function involved.
This explains why (1.18) is an identity without the modulo π condition.

In the statement of Theorem 1.8, we did not write down the explicit
expression for the gap functions due to their “case by case” nature as
can be seen in Section 4. The cone points and boundary geodesics as
geometric boundary components seem to have different roles in the series
in the generalized identities, resulting in the identities being somewhat
ad-hoc and not unified.

This difference can, however, be removed by assigning purely imagi-
nary length to a cone point as a geometric boundary component. More
precisely, for each generalized simple closed geodesic δ, we define its
complex length |δ| as: |δ| = 0 if δ is a cusp; |δ| = θi if δ is a cone
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point of angle θ ∈ (0, π]; and |δ| = l if δ is a boundary geodesic or
an interior generalized simple closed geodesic of length l > 0. Then,
we can reformulate the generalized McShane’s identities in Theorem 1.8
as follows, the case by case analysis is now replaced by just two fairly
simple elementary functions.

Theorem 1.16. Let M be a compact hyperbolic cone-surface with all
cone angles in (0, π], and let all its geometric boundary components be
∆0, ∆1, . . . ,∆N with complex lengths L0, L1, . . . , LN respectively. Then

∑

α,β

2 tanh−1

(

sinh L0

2

cosh L0

2
+ exp |α|+|β|

2

)

(1.22)

+
N

∑

j=1

∑

β

tanh−1

(

sinh L0

2
sinh

Lj

2

cosh |β|
2

+ cosh L0

2
cosh

Lj

2

)

=
L0

2
,

if ∆0 is a cone point or a boundary geodesic; and

∑

α,β

1

1 + exp |α|+|β|
2

+
N

∑

j=1

∑

β

1

2

sinh
Lj

2

cosh |β|
2

+ cosh
Lj

2

=
1

2
,(1.23)

if ∆0 is a cusp; where, in either case, the first sum is taken over all
unordered pairs of generalized simple closed geodesics α, β on M which
bound with ∆0 an embedded pair of pants on M (note that one of α, β
might be a geometric boundary component ) and the sub-sum in the sec-
ond sum is taken over all interior simple closed geodesics β which bounds
with ∆j and ∆0 an embedded pair of pants on M .

Furthermore, each series in (1.22) and (1.23) converges absolutely.

Remark 1.17. Note that the absolute convergence of the various
series in (1.22) and (1.23) is not obvious, as the summands in the series
are no longer all real and positive. For example, when ∆0 is a boundary
geodesic and some of the ∆j ’s are cone points, it is easily checked that
terms in the first series of the identity (1.22) where one of α or β is a
cone geometric boundary have non-zero real and imaginary parts. We
shall discuss this in more detail at the end of Section 10. The point
of view is also useful in generalizing the identities to classical Schottky
groups, see [29].

Additional Remark. We were informed while writing this paper by
Makoto Sakuma and Caroline Series of the recent striking results of
Maryam Mirzakhani [23] where she had generalized McShane’s identi-
ties to hyperbolic surfaces with boundary and used it to calculate the
Weil–Petersson volumes of the corresponding moduli spaces. There is
obviously an overlap of her results with ours, in particular, the identities
she obtains are equivalent to ours in the case of hyperbolic surfaces with
boundary (see Section 10 for further explanations). Her expressions in
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terms of the log function seem particularly well suited to her purpose of
calculating the Weil–Petersson volumes. In fact, as already observed by
her in [23], her results should extend to the cone-manifold case. Hence,
combined with our results, we get extensions of her formulae for the
Weil–Petersson volumes to the volumes of the moduli spaces of com-
pact hyperbolic cone-surfaces with all cone angles bounded above by
π, where a cone point of angle θ is regarded as a geometric boundary
component with purely imaginary length θi.
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3. The organization of the rest of the paper

The rest of the paper is organized as follows. In Section 4, we define
the gap functions used in Theorem 1.8 for the various cases. In Section
5, we deal with the problem of realization of simple closed curves by
geodesics, and show that the assumption that all cone angles are less
than or equal to π is essential. In Section 6, we analyze the so-called
∆0-geodesics, that is, the geodesics starting/emanating orthogonally
from ∆0, and determine all the gaps between all simple-normal ∆0-
geodesics, that is, the simple ∆0-geodesics which either never hit any
geometric boundary components or terminate at geometric boundary
components orthogonally. In Section 7, we calculate the gap function
which is the width of a combined gap measured suitably. In Section 8,
we show that the Birman–Series Theorem (which states that the point
set of all complete geodesics with bounded self intersection numbers on
a compact hyperbolic surface has Hausdorff dimension 1) extends to the
case of compact hyperbolic cone-surfaces with all cone angles less than
or equal to π. In Section 9, we give proofs of the other theorems, except
that of Theorem 1.16, which is deferred to the last section. Finally in
Section 10, we restate the complexified generalized McShane’s identity
(1.22) (Theorem 1.16) using two functions of complex variables and
hence, unify the somewhat unattractive “case-by-case” definition of the
gap functions. We interpret the geometric meanings of the complexified
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summands in the complexified generalized McShane’s identity and prove
the absolute convergence of the complexified series in it by a simple use
of the Birman–Series arguments in [6].

4. Defining the Gap functions

In this section, for a compact hyperbolic cone-surface M = M(∆0; k,
Θ, L) with all cone angles ≤ π we define the gap function Gap(∆0; α, β)
(when ∆0 is a cone point or a boundary geodesic) and the normalized
gap function Gap′(∆0; α, β) (when ∆0 is a cusp) where α, β are gener-
alized simple closed geodesics on M which bound with ∆0 a geometric
pair of pants. These functions essentially measure the (combined) gaps
in the complement of the set of complete simple geodesics that emanate
normally from ∆0, as explained in Section 6 and computed in Section 7.

Throughout the paper, we use |α| to denote the length of α when α
is an interior generalized simple closed geodesic or a boundary geodesic.
In particular, when α is a degenerate simple closed geodesic (that is,
the double cover of a simple geodesic arc which connects two angle π
cone points), its length |α| is defined as twice the length of the simple
geodesic arc that it covers.

Recall that an interior generalized simple closed geodesic is either
a simple closed geodesic in the geometric interior of M or a degener-
ate simple closed geodesic on M which is the double cover of a simple
geodesic arc which connects two angle π cone points.

Case 0. ∆0 is a cusp.

Subcase 0.1. Both α and β are interior generalized simple closed
geodesics.

In this case,

Gap′(∆0; α, β) =
1

1 + exp 1

2
(|α| + |β|)

.(4.1)

Subcase 0.2. One of α, β, say α, is a boundary geodesic and the other,
β, is an interior generalized simple closed geodesic.

In this case,

Gap′(∆0; α, β) =
1

2
− 1

2

sinh |β|
2

cosh |α|
2

+ cosh |β|
2

.(4.2)

Subcase 0.3. One of α, β, say α, is a cone point of cone angle ϕ ∈ (0, π]
and the other, β, is an interior generalized simple closed geodesic.

In this case,

Gap′(∆0; α, β) =
1

2
− 1

2

sinh |β|
2

cos ϕ
2

+ cosh |β|
2

.(4.3)
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Subcase 0.4. One of α, β, say α, is also a cusp and the other, β, is an
interior generalized simple closed geodesic.

In this case,

Gap′(∆0; α, β) =
1

2
− 1

2

sinh |β|
2

1 + cosh |β|
2

=
1

1 + exp 1

2
|β|

,(4.4)

which is the common value of Gap(∆0; α, β) in Subcases 0.1 through
0.3 when |α| = 0.

Case 1. ∆0 is a cone point of cone angle θ ∈ (0, π].

Subcase 1.1. Both α and β are interior generalized simple closed
geodesics.

In this case,

Gap(∆0; α, β) = 2 tan−1

(

sin θ
2

cos θ
2

+ exp |α|+|β|
2

)

.(4.5)

Subcase 1.2. One of α, β, say α, is a boundary geodesic and the other,
β, is an interior generalized simple closed geodesic.

In this case,

Gap(∆0; α, β) =
θ

2
− tan−1

(

sin θ
2
sinh |β|

2

cosh |α|
2

+ cos θ
2
cosh |β|

2

)

.(4.6)

Subcase 1.3. One of α, β, say α, is a cone point of cone angle ϕ ∈ (0, π]
and the other, β, is an interior generalized simple closed geodesic.

In this case,

Gap(∆0; α, β) =
θ

2
− tan−1

(

sin θ
2
sinh |β|

2

cos ϕ
2

+ cos θ
2
cosh |β|

2

)

.(4.7)

Note that there is no gap when θ = ϕ = π.

Subcase 1.4. One of α, β, say α, is a cusp and the other, β, is an
interior generalized simple closed geodesic.

In this case,

Gap(∆0; α, β) = 2 tan−1

(

sin θ
2

cos θ
2

+ exp |β|
2

)

(4.8)

=
θ

2
− tan−1

(

sin θ
2
sinh |β|

2

1 + cos θ
2
cosh |β|

2

)

,(4.9)

which is the common value of Gap(∆0; α, β) in Subcases 1.1 through
1.3 when |α| = 0.

Case 2. ∆0 is a boundary geodesic of length l > 0.
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Subcase 2.1. Both α and β are interior generalized simple closed
geodesics.

In this case,

Gap(∆0; α, β) = 2 tanh−1

(

sinh l
2

cosh l
2

+ exp |α|+|β|
2

)

.(4.10)

Subcase 2.2. One of α, β, say α, is a boundary geodesic and the other,
β, is an interior generalized simple closed geodesic.

In this case,

Gap(∆0; α, β) =
l

2
− tanh−1

(

sinh l
2
sinh |β|

2

cosh |α|
2

+ cosh l
2
cosh |β|

2

)

.(4.11)

Subcase 2.3. One of α, β, say α, is a cone point of cone angle ϕ ∈ (0, π]
and the other, β, is an interior generalized simple closed geodesic.

In this case,

Gap(∆0; α, β) =
l

2
− tanh−1

(

sinh l
2
sinh |β|

2

cos ϕ
2

+ cosh l
2
cosh |β|

2

)

.(4.12)

Subcase 2.4. One of α, β, say α, is a cusp and the other, β, is an
interior generalized simple closed geodesic.

In this case,

Gap(∆0; α, β) = 2 tanh−1

(

sinh l
2

cosh l
2

+ exp |β|
2

)

(4.13)

=
l

2
− tanh−1

(

sinh l
2
sinh |β|

2

1 + cosh l
2
cosh |β|

2

)

,(4.14)

which is the common value of Gap(∆0; α, β) in Subcases 2.1 through
2.3 when |α| = 0.

5. Realizing simple curves by geodesics

on hyperbolic cone-surfaces

In this section, we consider the problem of realizing essential simple
curves in their free (relative) homotopy classes by geodesics on a com-
pact hyperbolic cone-surface M with all cone angles smaller than π. We
show that each essential simple closed curve in the geometric interior of
M can be realized uniquely in its free homotopy class (where the homo-
topy takes place in the geometric interior of M) as either a geometric
boundary component or a simple closed geodesic in the geometric inte-
rior of M . We also show that each essential simple arc which connects
geometric boundary components of M can be realized uniquely in its
free relative homotopy class (where the homotopy takes place in the
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geometric interior of M and the endpoints slide on the same geometric
boundary components) as a simple geodesic arc which is normal to the
geometric boundary components involved. We also make addenda for
the cases when there are angle π cone points.

Theorem 5.1. Let M be a compact hyperbolic cone-surface with all
cone angles less than π.

(i) If c is an essential non-peripheral simple closed curve in the geo-
metric interior of M , then there is a unique simple closed geodesic
in the free homotopy class of c in the geometric interior of M .

(ii) If c is an essential simple arc which connects geometric boundary
components, then there is a unique simple normal geodesic arc in
the free relative homotopy class of c in the geometric interior of
M with endpoints varying on the respective geometric boundary
components.

Addendum 5.2. Suppose in addition that M has some cone angles
equal to π.

(i) In Theorem 5.1(i), if the simple closed curve c bounds with two
angle π cone points an embedded pair of pants, then the geodesic
realization for c is the double cover of the simple geodesic arc
which connects these two angle π cone points and is homotopic
(relative to boundary) to a simple arc lying wholly in the pair of
pants;

(ii) In Theorem 5.1(ii), if the simple arc c connects a geometric bound-
ary component ∆ to itself and bounds together with ∆ and an
angle π cone point P an embedded cylinder, then the geodesic
realization for c is the double cover of the normal simple geo-
desic arc which connects ∆ to P and is homotopic (relative to
boundary) to a simple arc lying wholly in the cylinder.

The simple geodesic in Theorem 5.1 and Addendum 5.2 is called the
geodesic realization of the given simple curve in the respective homotopy
class.

The proof is a well-known use of the Arzela–Ascoli Theorem as used
in [10] with slight modifications.

Proof. (i) Suppose c is an essential non-peripheral simple closed curve
in the geometric interior of M , parameterized on [0, 1] with constant
speed. Let the length of c be |c| > 0. Then for each cusp Ci, there is an
embedded neighborhood N(Ci) of Ci on M , bounded by a horocycle,
such that each non-peripheral simple closed curve c′ in the geometric
interior of M with length ≤ |c| cannot enter N(Ci); for otherwise c′

would be either peripheral or of infinite length. Now, let M0 be M with
all the chosen horocycle neighborhoods N(Ci) removed. Then M0 is
a compact metric subspace of M with the induced hyperbolic metric.
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Now, choose a sequence of simple closed curves {ck}∞1 , where each ck is
parameterized on [0, 1] with constant speed, in the free homotopy class
of c (where the homotopy takes place in the geometric interior of M)
such that their lengths ≤ |c| and are decreasing with limit the infimum
of the lengths of the simple closed curves in the free homotopy class of c.
Then by the Arzela–Ascoli Theorem (c.f. [10] Theorem A.19, p. 429),
there is a subsequence of {ck}∞1 , assumed to be {ck}∞1 itself, such that
it converges uniformly to a closed curve γ in M0. It is clear that γ is a
geodesic since it is locally minimizing. Note that γ is away from cusps
by the choice of {ck}∞1 . We claim that γ cannot pass through any cone
point. Suppose not, so that γ passes through a cone point P . Then,
for sufficiently large k, ck can be modified in the free homotopy class of
c to have length smaller than |γ| (since the cone point has cone angle
smaller than π), which is a contradiction. Thus, γ must be a closed
geodesic in the geometric interior of M . The uniqueness and simplicity
of γ can be proved by an easy argument since there are no bi-gons in
the hyperbolic plane.

(ii) For an essential simple arc c in the geometric interior of M which
connects geometric boundary components, the proof of case (i) applies
without modifications when none of the geometric boundary compo-
nents involved is a cusp. Now, suppose at least one of the geomet-
ric boundary components involved is a cusp. For concreteness, let us
assume that c connects cusps C1 to C2. Remove suitable horocycle
neighborhoods N(C1) and N(C2) respectively for C1 and C2 where the
two horocycles are H1 and H2 respectively. Choose a simple arc c0 in
M −N(C1)∪N(C2) which goes along c and connects H1 to H2. Let the
length of c0 be |c0| > 0. Now, for all other cusps Ci, there is a horocycle
neighborhood N(Ci) of Ci on M such that each non-peripheral simple
closed curve c′ in the geometric interior of M with length ≤ |c0| cannot
enter N(Ci). Again, let M0 be M with all the chosen horocycle neigh-
borhoods N(Ci) removed. By the same argument as in (i), we have
a shortest simple geodesic realization γ0 in the free relative homotopy
class of c0 in M0 and c0 does not pass through any cone point. Hence,
γ0 must be perpendicular to both H1 and H2 at its endpoints. Thus, γ0

can be extended to a geodesic arc connecting C1 to C2. Again simplicity
and uniqueness can be proved easily. q.e.d.

The addendum can be verified easily since the realizations as degen-
erate simple geodesics in the respective cases are already known.

Remark 5.3. We make a remark that the following fact, whose proof
is easy and hence omitted, is implicitly used throughout this paper: On
a hyperbolic cone-surface for each cone point P with angle less than π,
there is a cone region N(P ), bounded by a suitable circle centered at P ,
such that if a geodesic γ goes into N(P ), then either γ will go directly
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to the cone point P (hence, perpendicular to all the circles centered at
P ) or γ will develop a self-intersection in N(P ). The analogous fact for
a cusp is used in [6], [14] and [19].

6. Gaps between simple-normal ∆0-geodesics

In this section we analyze the set of (oriented) geodesic rays ema-
nating (perpendicularly) from ∆0. To illustrate the ideas, let us first
consider the case where ∆0 is a boundary geodesic (the other two cases
are similar); then the rays in this set can be identified naturally with the
points on ∆0 itself. The set of complete, simple rays are the geodesic
rays that develop fully (does not end in a boundary component), and are
simple (no self-intersection); they form a Cantor set, as a subset of ∆0,
by the analysis of [19], with Lebesgue measure zero by a generalization
of the Birman–Series result (see Section 8). The complement, which is
a countable collection of open intervals/gaps consists of rays which are
either self-intersecting, or are simple and end at one of the boundary
components (possibly ∆0 itself). There are also certain isolated geo-
desic rays in these gaps which are simple and terminate at a boundary
component perpendicularly (in particular ∆0 itself), these will be useful
for demarcating the gaps further, and for calculating the width of the
gaps. It turns out to be simpler to analyze the set of rays which are
either self-intersecting or terminate at a boundary component, rather
than the complete simple rays, as done in [19]. In particular, we will
not really need to know the Cantor set structure of the set of complete
simple rays, only the Birman–Series result. We shall see that each such
ray determines uniquely an embedded pair of pants in the cone surface
where ∆0 is one of the boundary components of the pair of pants, such
that the part of the geodesic ray up to the first point of self-intersection,
or the intersection with a boundary component lies completely in the
pair of pants. Furthermore, the width of the gap on which this geodesic
ray lies on can be calculated from the lengths of the other two boundary
components, together with the length of ∆0.

Let us fix throughout this section a compact hyperbolic cone-surface
M with a distinguished geometric boundary component ∆0. We first
make some terminology for the classes of geodesics we are interested in.

Definition 6.1. A ∆0-geodesic on M is an oriented geodesic ray
which starts from ∆0 (and is perpendicular to it if ∆0 is a boundary
geodesic) and is fully developed, that is, it develops forever, or until it
terminates at a geometric boundary component. We denote by G(∆0)
(or just G) the set of ∆0-geodesics.

A ∆0-geodesic is either non-simple or simple. It is regarded as non-

simple if and only if it intersects itself transversely at an interior point
(a cone point is not treated as an interior point) or at a point on a
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boundary geodesic (this occurs only if ∆0 is a boundary geodesic and
the point of intersection is on ∆0).

A simple ∆0-geodesic is either normal or not-normal in the following
sense:

A simple ∆0-geodesic is normal if when fully developed either it
never intersects any boundary geodesic or it intersects (hence terminates
at) a boundary geodesic perpendicularly. Note that a simple-normal ∆0-
geodesic may terminate at a cusp or a cone point. Thus, a simple ∆0-
geodesic is not-normal if and only if it intersects a boundary geodesic
(which might be ∆0 itself) obliquely.

We shall analyze the structure of all non-simple and simple-not-
normal ∆0-geodesics and show that they form gaps between simple-
normal ∆0-geodesics. Furthermore, the naturally measured widths of
the suitably combined gaps are given by the Gap functions defined be-
fore in Section 4.

Note that McShane [19] analyzes directly all simple ∆0-geodesics
(there are no simple-not-normal ∆0-geodesics in his case since there are
no geodesic boundary components). Our analysis of the structure of
∆0-geodesics in the complement (non-simple and simple-not-normal) is
a bit different from and actually simpler than that of McShane’s. We
shall show that these geodesics arise in the nice ways we expect, and
are associated to canonical pairs of pants on the surface.

First, we parameterize all the ∆0-geodesics and define the widths for
gaps between simple-normal ∆0-geodesics.

If ∆0 is a cusp, let H be a suitably chosen small horocycle as in
McShane [19], see also [14]. If ∆0 is a cone point, let H be a suitably
chosen small circle centered at ∆0. Let H be ∆0 itself if ∆0 is a boundary
geodesic.

Then, each ∆0-geodesic has a unique first intersection point with
H, which is the starting point when ∆0 is a boundary geodesic. Note
that the ∆0-geodesics intersect H orthogonally at their first intersection
points. Thus, G can be naturally identified with H, with the induced
topology and measure. Let Hns, Hsn, Hsnn be the point sets of the first
intersections of H with respectively all non-simple, all simple-normal,
all simple-not-normal ∆0-geodesics.

Proposition 6.2. The set Hns ∪ Hsnn is an open subset of H and
hence Hsn is a closed subset of H.

Proof. It is easy to see that the conditions of self-intersecting or end-
ing obliquely at a boundary component is an open condition. q.e.d.

For the open subset Hns ∪ Hsnn of H, we determine its structure by
determining its maximal open intervals (which are the gaps we are look-
ing for). By a generalized Birman–Series Theorem (see Section 8), the
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subset Hsn of H has Hausdorff dimension 0, and hence Lebesgue mea-
sure 0. Therefore, the open subset Hns∪Hsnn of H has full measure, and
our generalized McShane’s identities (1.8)–(1.10) follow immediately.

Definition 6.3. A [∆0, ∆0]-geodesic, γ, is an (oriented) ∆0-geodesic
which terminates at ∆0 perpendicularly. (With the orientation, one can
refer to its starting point and ending point.) Hence, the same geodesic
with reversed orientation (hence with the starting and ending points
interchanged) is also a [∆0, ∆0]-geodesic, denoted by −γ.

We say that a [∆0, ∆0]-geodesic γ is a degenerate simple [∆0, ∆0]-
geodesic if ∆0 is not a π cone point, and γ is the double cover of a
simple geodesic arc which connects ∆0 to an angle π cone point, that
is, γ reaches the angle π cone point along the simple geodesic arc and
goes back to ∆0 along the same arc. Note that in this case γ = −γ.

We show that each non-degenerate simple [∆0, ∆0]-geodesic γ deter-
mines two maximal open intervals of Hns∪Hsnn as follows. (Their union
is the main gap, defined later, determined by γ.)

Consider the configuration γ∪H. Assume γ is non-degenerate and let
H1 and H2 be the two sub-arcs with endpoints inclusive that γ divides
H into. Note that γ intersects H twice (if H is taken to be a suitably
small circle about ∆0 when ∆0 is a cone point). Let γ0 be the sub-arc
of γ between the two intersection points. Thus, we have two simple
closed curves H1∪γ0 and H2∪γ0 on M . Their geodesic realizations are
disjoint generalized simple closed geodesics, denoted by α, β respectively
(except when M is a hyperbolic torus with a single geometric boundary
component, in which case α = β). Note that α, β bound with ∆0 an
embedded geometric pair of pants, denoted P(γ), on M .

Let δα be the simple ∆0-geodesic arc in P(γ) which terminates at α
and is normal to α. Similarly, let δβ be the simple ∆0-geodesic arc in
P(γ) which terminates at β and is normal to β. Let [α, β] be the simple
geodesic arc in P(γ) which connects α and β and is normal to them.
See Figure 1.

Cutting P(γ) along δα, δβ and [α, β], one obtains two pieces; let the
one which contains the initial part of γ be denoted by P+(γ). There
are two simple ∆0-geodesics, γα and γβ, in P(γ) such that they are
asymptotic to α and β respectively, and such that their initial parts are
contained in P+(γ). See Figure 1.

Lemma 6.4. Each ∆0-geodesic whose initial part lies in P+(γ) be-
tween γα and γ or between γ and γβ is non-simple or simple-not-normal.

The union of these two gaps between simple-normal ∆0-geodesics
formed by non-simple and simple-not-normal ∆0-geodesics is called the
main gap determined by γ.

This lemma can be proved easily using a suitable model of the hy-
perbolic plane. The idea is that a ∆0-geodesic ray whose initial part
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Figure 1.

lies in P+(γ) between γα and γ will not intersect γα or γ directly, so
it must come back to intersect for the first time either itself or ∆0,
hence is either non-simple or simple, but not-normal (that is, intersect-
ing ∆0 obliquely). More precisely, if ∆0 is a cusp or a cone point, all the
∆0-geodesics in the lemma are non-simple, while if ∆0 is a boundary
geodesic, then there is a (critical) ∆0-geodesic, ργ , whose initial part
lies in P+(γ) between γα and γ such that ργ is non-simple and its only
self-intersection is at its starting point on ∆0 (and hence terminates
there) and it has the property that each ∆0-geodesic whose initial part
lies in P+(γ) between γα and ργ is non-simple, while each ∆0-geodesic
whose initial part lies in P+(γ) between ργ and γ is simple-not-normal
terminating at ∆0. There is a similar dichotomy for the ∆0-geodesics
whose initial parts lie in P+(γ) between γ and γβ.

Now, suppose one of α, β, say α, is a boundary geodesic. Then, there
are two simple ∆0-geodesics in P(γ) which are asymptotes to α. They
are γα and (−γ)α.

The following lemma tells us that there is an extra gap determined
by γ in P+(γ) between simple-normal ∆0-geodesics formed by simple-
not-normal ∆0-geodesics.

Lemma 6.5. Each ∆0-geodesic whose initial part lies in P+(γ) be-
tween δα and γα is simple-not-normal.

This is almost self-evident from the geometry of the pair of pants
P (γ), and the proof is similar to that of the previous lemma.

Note that there is a similar and symmetric picture for the ∆0-geodesics
whose initial parts lie in P−(γ).

Hence, (for non-degenerate γ) in the geometric pair of pants P(γ),
which is the same as P(−γ), if none of α, β is a boundary geodesic,
then there are two main gaps determined by γ and −γ respectively; if
(exactly) one of α, β is a boundary geodesic, then there are two extra
gaps determined by γ and −γ.
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The case of a degenerate simple [∆0, ∆0]-geodesic γ is handled in a
similar way. Recall that γ is the double cover of a ∆0-geodesic arc δ
from ∆0 to an angle π cone point α. Then, there is a simple closed curve
β′, which is the boundary of a suitable regular neighborhood of ∆0 ∪ δ
on M , such that β′ bounds with ∆0 and α an embedded (topological)
pair of pants. If ∆0 is not itself an angle π cone point, then β′ can
be realized as an interior generalized simple closed geodesic β which
bounds with ∆0 and α an embedded pair of pants H(∆0, α, β) on M
and we can carry out the analysis as above with suitable modifications.
In this case, γ determines no gaps if ∆0 is itself an angle π cone point.
If ∆0 is not itself an angle π cone point, then there are two main gaps,
between γ and each of the two ∆0-geodesics which are asymptotic to β
in H(∆0, α, β). We say that one of the two main gaps is determined by
γ and the other by −γ although γ = −γ in this case.

Definition 6.6. The width of an open subinterval H′ of H is defined
respectively as:

(i) ∆0 is a cusp: the normalized parabolic measure, that is, the ratio
of the Euclidean length of H′ to the Euclidean length of H;

(ii) ∆0 is a cone point: the elliptic measure, that is, the angle (mea-
sured in radians) that H′ subtends with respect to the cone point
∆0;

(iii) ∆0 is a boundary geodesic: the hyperbolic measure, that is, the
hyperbolic length of H′ (recall that in this case, H is the same as
the distinguished boundary geodesic ∆0).

Definition 6.7. The combined gap between simple-normal ∆0-
geodesics determined by γ is the union of the main gap and the extra
gap (if there is any) determined by γ. The gap function Gap(∆0; α, β)
when ∆0 is a cone point or boundary geodesic or the normalized gap

function Gap′(∆0; α, β) when ∆0 is a cusp is defined as the total width
of the combined gap determined by γ, which is by symmetry the same
as the total width of the combined gap determined by −γ.

We shall calculate the gap functions in Section 7.
On the other hand, the following key lemma shows that the non-

simple and simple-not-normal ∆0-geodesics obtained above are all the
non-simple and simple-not-normal ∆0-geodesics.

Lemma 6.8. Each non-simple or simple-not-normal ∆0-geodesic lies
in a main gap or an extra gap determined by some [∆0, ∆0]-geodesic γ.

Proof. First, let δ be a non-simple ∆0-geodesic, with its first self-
intersection point Q, where Q lies in the geometric interior of M or
in ∆0 when ∆0 is a boundary geodesic. Let δ1 be the part of δ from
starting point to Q; note that δ1 has the shape of a lasso. Then in
the boundary of a suitable regular neighborhood of δ1, there is a simple
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γ

δ

Figure 3.

arc γ′ which connects ∆0 to itself and is disjoint from δ1 (except at ∆0

when ∆0 is a cone point); there is also a simple closed curve α′ which is
freely homotopic to the loop part of δ1. See Figure 2. Let γ, α be the
generalized simple closed geodesics on M which realize γ′, α′ in their
respective free (relative) homotopy classes in the geometric interior of
M . An easy geometric argument shows that α is disjoint from δ1 and
that γ is also disjoint from δ1 except at ∆0 when ∆0 is a cone point or
a cusp. Furthermore, γ and α cobound (together with ∆0 when ∆0 is
a boundary geodesic) an embedded cylinder which contains δ1. Hence,
the point in H which corresponds to the ∆0-geodesic δ lies in the main
gap determined by γ. See Figure 3.

Next, let δ be a simple-not-normal ∆0-geodesic which terminates at
∆0 itself; in this case, ∆0 is a boundary geodesic and H is ∆0 itself.
Then, the boundary of a suitably chosen regular neighborhood of δ ∪H
consist of two disjoint simple closed curves in the geometric interior of
M . Let their geodesic realizations be (disjoint) generalized simple closed
geodesics α and β. Then, α, β bound with ∆0 an embedded pair of pants
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which contains δ in a main gap determined by the [∆0, ∆0]-geodesic γ
which is the geodesic realization of δ in its free relative homotopy class.

Finally, let δ be a simple-not-normal ∆0-geodesic which terminates
at a boundary geodesic ∆1 which is different from ∆0. The boundary
of suitably chosen regular neighborhood of δ ∪∆1 on M is a simple arc
connecting ∆0 to itself and is disjoint from δ. Its geodesic realization is
a [∆0, ∆0]-geodesic, γ, which is disjoint from δ. Now, ∆1, γ bound with
∆0 an embedded cylinder which contains δ. Hence, δ lies in the extra
gap determined by γ or −γ. q.e.d.

7. Calculating the gap functions

In this section, we calculate the gap function Gap(∆0; α, β) when ∆0

is a cone point or a boundary geodesic, it is the width of the combined
gap determined by a simple [∆0, ∆0]-geodesic γ on M .

Recall that α, β are the generalized simple closed geodesics deter-
mined by γ and P(γ) is the geometric pair of pants that α, β bound
with ∆0 on M .

Case 1. ∆0 is a cone point of cone angle θ ∈ (0, π].

In this case, the width of the main gap determined by γ is the angle
between γα and γβ .

Let x be the angle between δα and γα and let y be the angle between
δβ and γβ .

Subcase 1.1. Both α and β are interior generalized simple closed
curves.

In this case, the width of the combined gap determined by γ is the
angle between γα and γβ and is equal to θ

2
− (x + y).

By a formula in Fenchel [12] VI.3.2 (line 10, page 87),

sinh |δα| =
cosh |β|

2
+ cos θ

2
cosh |α|

2

sin θ
2
sinh |α|

2

,(7.1)

sinh |δβ| =
cosh |α|

2
+ cos θ

2
cosh |β|

2

sin θ
2
sinh |β|

2

.(7.2)

Hence

tan x =
1

sinh |δα|
=

sin θ
2
sinh |α|

2

cosh |β|
2

+ cos θ
2
cosh |α|

2

,(7.3)

tan y =
1

sinh |δβ|
=

sin θ
2
sinh |β|

2

cosh |α|
2

+ cos θ
2
cosh |β|

2

.(7.4)
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Figure 4. Subcase 1.1.
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Figure 5. Subcase 1.3.

From these, one can derive that

tan (x + y) =
sin θ

2
sinh |α|+|β|

2

1 + cos θ
2
cosh |α|+|β|

2

(7.5)

and hence that

tan
x + y

2
= tan

θ

4
tanh

|α| + |β|
4

.(7.6)

Thus

tan

(

θ

4
− x + y

2

)

=
tan θ

4

(

1 − tanh |α|+|β|
4

)

1 + tan2 θ
4

tanh |α|+|β|
4

(7.7)

=
sin θ

2

cos θ
2

+ exp |α|+|β|
2

.(7.8)

Hence, in this case, we have

Gap(∆0; α, β) =
θ

2
− (x + y)

= 2 tan−1

(

sin θ
2

cos θ
2

+ exp |α|+|β|
2

)

.

Subcase 1.2. α is a boundary geodesic and β is an interior generalized
simple closed geodesic.

In this case, the width of the combined gap determined by γ is the
angle between δα and γβ and is equal to θ

2
−y. Hence, by (7.4), we have

Gap(∆0; α, β) =
θ

2
− tan−1

(

sin θ
2
sinh |β|

2

cosh |α|
2

+ cos θ
2
cosh |β|

2

)

.(7.9)



96 S.P. TAN, Y.L. WONG & Y. ZHANG

Subcase 1.3. α is a cone point of cone angle ϕ ∈ (0, π] and β is an
interior generalized simple closed geodesic.

Note that, in this case, γα coincides with δα and hence x = 0. There-
fore, the width of the combined gap determined by γ is the angle between
δα and γβ and is equal to θ

2
− y.

Now, by a formula in Fenchel [12] VI.3.3 (line 13, p. 88),

sinh |δβ| =
cos ϕ

2
+ cos θ

2
cosh |β|

2

sin θ
2
sinh |β|

2

.(7.10)

Hence

tan y =
1

sinh |δβ |
=

sin θ
2
sinh |β|

2

cos ϕ
2

+ cos θ
2
cosh |β|

2

.(7.11)

Thus, in this case, we have

Gap(∆0; α, β) =
θ

2
− tan−1

(

sin θ
2
sinh |β|

2

cos ϕ
2

+ cos θ
2
cosh |β|

2

)

.(7.12)

Case 2. ∆0 is a boundary geodesic of length l > 0.

In this case, the width of the main gap determined by γ is the distance
between γα and γβ along ∆0.

Let x be the distance between δα and γα along ∆0 and let y be the
distance between δβ and γβ along ∆0.

We shall see that all calculations in this case are parallel to those in
Case 1.

Subcase 2.1. Both α and β are interior generalized simple closed
curves.

In this case, the width of the combined gap determined by γ is the
distance between γα and γβ along ∆0 and is equal to l

2
− (x + y).

By the cosine rule for right angled hexagons on the hyperbolic plane
(c.f. Fenchel [12] VI.3.1, page 86, or Beardon [4] Theorem 7.19.2, page
161),

cosh |δα| =
cosh |β|

2
+ cosh l

2
cosh |α|

2

cosh l
2
sinh |α|

2

,(7.13)

cosh |δβ| =
cosh |α|

2
+ cosh l

2
cosh |β|

2

sinh l
2
sinh |β|

2

.(7.14)

Hence

tanhx =
1

cosh |δα|
=

sinh l
2
sinh |α|

2

cosh |β|
2

+ cosh l
2
cosh |α|

2

,(7.15)
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Figure 6. Subcase 2.1.
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Figure 7. Subcase 2.3.

tanh y =
1

cosh |δβ|
=

sinh l
2
sinh |β|

2

cosh |α|
2

+ cosh l
2
cosh |β|

2

.(7.16)

From these, one can derive that

tanh (x + y) =
sinh l

2
sinh |α|+|β|

2

1 + cosh l
2
cosh |α|+|β|

2

(7.17)

and hence that

tanh
x + y

2
= tanh

l

4
tanh

|α| + |β|
4

.(7.18)

Thus,

tanh

(

l

4
− x + y

2

)

=
tanh l

4

(

1 − tanh |α|+|β|
4

)

1 − tanh2 l
4

tanh |α|+|β|
4

(7.19)

=
sinh l

2

cosh l
2

+ exp |α|+|β|
2

.(7.20)

Hence, in this case, we have

Gap(∆0; α, β) =
l

2
− (x + y)

= 2 tanh−1

(

sinh l
2

cosh l
2

+ exp |α|+|β|
2

)

.

Subcase 2.2. α is a boundary geodesic and β is an interior generalized
simple closed geodesic.

In this case, the width of the combined gap determined by γ is the
distance between δα and γβ along ∆0 and is equal to l

2
− y. Hence, by
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(7.16), we have

Gap(∆0; α, β) =
l

2
− tanh−1

(

sinh l
2
sinh |β|

2

cosh |α|
2

+ cosh l
2
cosh |β|

2

)

.(7.21)

Subcase 2.3. α is a cone point of cone angle ϕ ∈ (0, π] and β is an
interior generalized simple closed geodesic.

Note that, in this case, γα coincides with δα and hence x = 0. Hence,
the width of the combined gap determined by γ is the distance between
δα and γβ along ∆0 and is equal to l

2
− y.

Now, by a formula in Fenchel [12] VI.3.2 (line 8, p. 87),

cosh |δβ| =
cos ϕ

2
+ cosh l

2
cosh |β|

2

sinh l
2
sinh |β|

2

.(7.22)

Hence

tanh y =
1

cosh |δβ|
=

sinh l
2
sinh |β|

2

cos ϕ
2

+ cosh l
2
cosh |β|

2

.(7.23)

Thus, in this case, we have

Gap(∆0; α, β) =
l

2
− tanh−1

(

sinh l
2
sinh |β|

2

cos ϕ
2

+ cosh l
2
cosh |β|

2

)

.(7.24)

Remark 7.1. We remark that the formulae in Case 0 for the normal-
ized width Gap′(∆0; α, β) when ∆0 is a cusp can be derived by similar
(and simpler) calculations or by considering the first order infinitesimal
terms of those formulae with respect to θ in Case 1 or with respect to l
in Case 2. Hence, all derivations in Case 0 are omitted.

8. Generalization of the Birman–Series Theorem

The celebrated Birman–Series Theorem [6] in its simplest form states
that complete simple geodesics on a closed hyperbolic surface are sparse-
ly distributed.

A simple extension of the techniques used to prove the above shows
that for a hyperbolic surface M with cusps, the set of simple geodesic
rays emanating from a distinguished cusp ∆0 has Lebesgue measure 0;
that is, if we identify the set of all geodesic rays emanating from the
cusp ∆0 with a small horocycle H around ∆0 as in Section 6, with the
standard horocyclic measure on H, then the subset of H corresponding
to the simple geodesic rays has Lebesgue measure 0. This was the result
used by McShane in [19], to show that the sum of the gaps indeed gave
the full measure. The aim of this section is to show that the same result
holds for a hyperbolic cone surface M with geometric boundary where
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each cone point has cone angle in (0, π]. The techniques are similar to
[6], we will omit details.

For clarity of exposition, let us assume that ∆0 is a cone point, and
that there are no geodesic boundary components, so all boundary com-
ponents are either cone points or cusps. It is not difficult to see that
the arguments below extend to when there are geodesic boundary com-
ponents as well (for example, by a doubling argument), or when ∆0 is
a cusp or boundary geodesic. We are interested in the set G of geodesic
rays emanating from ∆0, which can be identified with a suitably chosen
small circle H about ∆0, as in Section 6, with the standard measure.
We wish to show that the subset of H corresponding to the simple nor-
mal geodesic rays has Lebesgue measure zero. It suffices to consider
the non-terminating simple geodesic rays (those that do not end at a
geometric boundary) since the terminating ones are countable, and in
fact are the boundary of gaps on both sides and so can be absorbed into
the calculation of the gap measures.

We start by cutting M along normal geodesics connecting cusps or
cone points to form a (convex, by the cone angle conditions) fundamen-
tal polygon for M in the hyperbolic plane. All vertices of the polygon
correspond to either cusps or cone points of M . We now truncate the
polygon by replacing each vertex corresponding to a cusp by a suitably
small horocycle; all geodesics on M which intersect this horocycle will
either go directly into the cusp or be self intersecting, see Remark 5.3.
Call the resulting convex polygon R, this will now have finite diameter,
and will be a fundamental polygon for M̄ , which is M with some horo-
cyclic neighborhood of the cusps removed. All non-terminating, simple
geodesic rays from ∆0 are contained in M̄ . Let A = {a1, a2, . . . , am}
denote the ordered set of vertices and oriented sides of R with anti-
clockwise ordering, fixing a1 so that it corresponds to ∆0. Then for odd
i, ai are vertices of R, for even i, ai are (oriented) sides of R, and there
is a side-pairing pattern for R.

A simple non-terminating geodesic ray emanating from ∆0 intersects
the projection of ∂R onto M̄ in an infinite sequence of partition points
t0, t1, . . . , tn, . . . on the geodesic, where t0 is the initial point of the ray,
and so on. This gives rise to an infinite sequence of non-intersecting
geodesic arcs on R, with the endpoints of each geodesic arc lying on ∂R,
hence, each arc corresponds to a pair of elements in A. Each partition
point ti with i ≥ 1 corresponds to the end point of one arc and the
starting point of the next, denote by a(ti) the element of A where the
end point of the arc corresponding to ti lies, for example, a(t1) is the
element of A on which the endpoint of the first geodesic arc lies. Now,
take the finite part of the ray, call it γ, which gives rise to just the first n
arcs of the sequence, we get what is known as a simple diagram of length
n on R (see [6]), which is a collection of n pairwise disjoint (geodesic)
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d

c

b̄

Figure 8. Simple diagram for a geodesic arc.

arcs joining pairs of distinct elements of A. Note that only the initial
point of γ lies on a vertex of R, all other end points of the arcs lie on sides
of R. Two simple diagrams are regarded as being identical if they agree
up to isotopy supported on each side of R. For ai, aj ∈ A, i 6= j, let nij

denote the number of arcs joining ai to aj in the given simple diagram,
and let h1(γ) = (n12, n13, . . ., nm−1,m). Let h2(γ) record positions of
the initial and final points of γ in the simple diagram. See Figure 8
which shows the schematic picture of the simple diagram for a geodesic
arc emanating from the cone point of a genus two surface with one cone
point, where P is the initial point and Q the terminal point of the arc.

More generally, denote by J0(n) the set of oriented simple geodesic
arcs γ on M̄ such that the initial and final points of γ lie on the pro-
jection of ∂R to M̄ and γ gives rise to a simple diagram of length n on
R. We say that the combinatorial length of γ (with respect to R) is n,
and denote it by ‖ γ ‖. Then, the following results of [6] still hold:

Lemma 8.1. Suppose that γ, γ′ ∈ J0 and that h1(γ) = h1(γ
′), h2(γ)

= h2(γ
′). Let t0, t1, . . . , tn and t′0, t

′
1, . . . , t

′
n be the partition points of

γ, γ′ respectively. Then, a(ti) = a(t′i) for each i = 1, 2, . . . , n.

Lemma 8.2. Let J0(n) = {γ ∈ J0 | ‖ γ ‖= n}. Then, there is a
polynomial P0(·) such that the number of simple diagrams of length n

card{(h1(γ), h2(γ)) | γ ∈ J0(n)} ≤ P0(n).

The results above as applied to simple, non-terminating geodesic rays
emanating from ∆0 says that first, the initial n cutting sequence of the
geodesic γ with ∂R is determined by h1(γ) and h2(γ), and secondly,
there is a polynomial bound P (n) on the number of possibilities for
such cutting sequences. On the other hand, a simple geodesic segment
with large combinatorial length n is long. When all cone angles are
less than π, this follows from the fact that each geodesic segment of the
simple diagram is bounded below by some fixed constant α > 0, where
α depends only on R, since segments connecting two non-adjacent sides
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are certainly bounded below by a positive constant, segments connecting
adjacent sides are bounded by Remark 5.3. A slight refinement is needed
if there are cone angles equal to π, see for example [6] for the arguments
needed. Finally, two simple geodesic rays emanating from ∆0 with
the same initial cutting sequence for large n travel within a bounded
distance of each other for a long time (here, we use the fact that the
polygon R has finite diameter), hence, start out exponentially close
together. These last two results are formalized in the following lemmas.

Lemma 8.3. There is a universal constant α > 0 (depending only
on the choice of the fundamental polygon R ) so that

l(γ) ≥ α ‖ γ ‖
for γ ∈ J0 with ‖ γ ‖ sufficiently large, where l(γ) denotes the hyperbolic
length of γ.

Lemma 8.4. Suppose γ and γ′ are simple, non-terminating geodesics
emanating from ∆0 such that the first n cutting sequence of γ and γ′

with R are identical, that is, ai(γ) = ai(γ
′) for i = 1, . . . , n. Let p(γ)

and p(γ′) be the points on H corresponding to γ and γ′ respectively,
where H is a fixed circle of small radius about ∆0, equipped with the
standard length measure | |. Then, there exists universal constants α, c
such that |p(γ′) − p(γ)| < ce−αn.

From the above, it follows that the set of simple non-terminating
geodesic rays emanating from a fixed cone point ∆0 regarded as a subset
of H has an open cover by ≤ P (n) open intervals of length < ce−αn,
letting n → ∞, we see the Lebesgue measure is 0. Slight modifications
of the arguments above apply to the cases where ∆0 is a boundary
geodesic or cusp.

Finally, we remark that the above Birman–Series’ arguments will
give rough estimates (upper bounds) for the number of simple closed
geodesics with the same combinatorial length on a compact hyperbolic
cone-surface M , which is enough for proving the absolute convergence of
the series appearing in various generalized McShane’s identities, as was
observed and used in [2], (for the case of complete hyperbolic surfaces)
for similar purposes.

Lemma 8.5. Let M be a compact hyperbolic cone-surface with all
cone angles in (0, π]. Then, for any constant c > 0

(i) the series
∑

β

1

exp(c|β|)(8.1)

converges absolutely, where the sum is taken over all generalized
simple closed geodesics on M and all simple normal geodesic arcs
connecting geometric boundary components of M ;
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(ii) the series
∑

α,β

1

exp(c(|α| + |β|))(8.2)

converges absolutely, where the sum is taken over all pairs α, β of
disjoint generalized simple closed geodesics on M and/or simple
normal geodesic arcs connecting geometric boundary components
of M .

The idea of the proof is that, in the case of (i), each β determines
and is determined by a unique complete simple diagram which contains
the complete information of β (in the case where β is a simple closed
geodesic, the diagram is closed, that is, we have tn = t0 using earlier
notation). Hence, the number of all such β with combinatorial length
‖β‖ = n is bounded by the polynomial value P0(n). Note that each
β has hyperbolic length |β| at least κ‖β‖ for some constant κ > 0
depending only on the chosen fundamental domain R; hence, we have
c|β| ≥ cκ‖β‖. It follows that

∑

β

1

exp(c|β|) ≤
∞

∑

n=1

∑

‖β‖=n

1

exp(cκ‖β‖)

≤
∞

∑

n=1

P0(n)

exp(cκn)

and hence the series in (8.1) converges. One can prove (8.2) similarly
since each pair α, β can be determined by a suitable complete simple
diagram. The referee has also pointed out that the above upper bounds
can be proven by a direct application of train tracks.

9. Proof of Theorems

Proof of Theorem 1.8. Now, the proof is obvious from the previous dis-
cussions. Suppose ∆0 is a cone point. Recall H is a suitably chosen
small circle centered at ∆0, and Hns, Hsn, Hsnn are the point sets of
the first intersections of H with respectively all non-simple, all simple-
normal, all simple-not-normal ∆0-geodesics. The elliptic measure of
each of these subsets of H is the radian measure that it subtends to the
cone point ∆0. The generalized Birman–Series Theorem in Section 8
implies that the closed subset Hsn has measure 0. Hence, the open sub-
set Hns ∪ Hsnn has full measure, that is, θ0. Now, the maximal open
intervals of Hns∪Hsnn, suitably combined, have measure 2Gap(∆0; α, β)
for each unordered pair of generalized simple closed geodesics α, β on
M which bound with ∆0 an embedded pair of pants on M . Hence, their
sum is equal to θ0 and the desired identity follows. The cases where ∆0

is a boundary geodesic or a cusp are similarly proved. q.e.d.
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Proof of Corollary 1.10. Consider the case where ∆0 is a cone point.
In this case, T admits a unique elliptic involution η such that η maps
each oriented simple closed geodesics on T onto itself with orientation
reversed. Note that η fixes the cone point ∆0 and three other inte-
rior points which are the so-called Weierstrass points of T . Each simple
closed geodesics on T passes exactly two Weierstrass points; hence, there
are three Weierstrass classes of simple closed geodesics on T . Now, the
quotient of T under η is a sphere with three angle π cone points and a
cone point with angle θ/2. Then, Theorem 1.8 applies to M = T/〈η〉,
with ∆0 the angle π cone point whose inverse image under η is the
Weierstrass point that the Weierstrass class A misses. Note that each
generalized simple closed geodesic on M = T/〈η〉 is either a geometric
boundary component or degenerate simple closed geodesic which is the
double cover of a simple geodesic arc which connects two Weierstrass
points. Hence, the set of all pairs of generalized simple closed geodesics
which bound with ∆0 an embedded pair of pants is exactly the set of
pairs consisting of the angle θ/2 cone point plus a degenerate simple
closed geodesic γ′ which is the double cover of the quotient simple ge-
odesic arc of a simple closed geodesic γ on T in the given Weierstrass
class A (note that by definition the length of γ′ is the same as that of
γ). Hence, by (4.7), the summand in the summation is

π

2
− tan−1

(

sin π
2

sinh |γ|
2

cos θ
4

+ cos π
2

cosh |γ|
2

)

= tan−1

(

cos θ
4

sinh |γ|
2

)

.

The proof for the case where ∆0 is a boundary geodesic is similar.
q.e.d.

Remark 9.1. Note that we can also choose ∆0 to be the angle θ/2
cone point on T/〈η〉, then we obtain (1.4), the generalization of Mc-
Shane’s original identity to the cone-torus T . This is one way of seeing
why we can allow the cone angle of up to 2π in the cone torus case.

Proof of Theorem 1.13. It is well known that M admits a unique hy-
perelliptic involution η (see for example [15]) such that η maps each
simple closed geodesic onto itself and preserves/reverses the orientation
of separating/non-separating simple closed geodesics. Note that η leaves
six points on M fixed; they are the six Weierstrass points on M . Con-
sider the quotient M ′ = M/〈η〉 which is a sphere with six angle π cone
points. Each generalized simple closed geodesic on M ′ is either

(i) an angle π cone point; or
(ii) a degenerate simple closed geodesic β′ which is the double cover

of a simple geodesic arc c connecting two angle π cone points
where the inverse image of c under η is a non-separating simple
closed geodesic β on M ; or
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(iii) a separating (non-degenerate) simple closed geodesic α′ whose
inverse image under η is a separating simple closed geodesic α on
M . In this case, α′ does not pass through any of the six angle
π cone points and there are three of them on each side of α′ on
M ′. Hence, α passes none of six Weierstrass points and there are
three of them on each side of α on M .

Now, apply Theorem 1.8 to M ′ with ∆0 one of the six angle π cone
points. Then, each pair of generalized simple closed geodesics on M ′

which bound with ∆0 an embedded pair of pants P consists of a sepa-
rating simple closed geodesic α′ on M ′ and a degenerate simple closed
geodesic β′ on M ′ which lies on the same side of α′ as ∆0 and misses ∆0.
Let the inverse image of α′, β′ under η be α, β. Then, α is a separating
simple closed geodesic on M and β is a non-separating simple closed
geodesic on M . Furthermore, β and the Weierstrass point which is the
inverse image of ∆0 lie on the same side of α on M . Note that the hyper-
bolic lengths of α′, β′ are respectively |α|/2, |β|. Hence by (4.5), in this
case, the summand in the resulting generalized McShane’s Weierstrass
identity for M ′ with the chosen ∆0 is

2 tan−1

(

sin π
2

cos π
2

+ exp |α|/2+|β|
2

)

= 2 tan−1 exp

(

−|α|
4

− |β|
2

)

.

Note that each pair of disjoint simple closed geodesics (α, β) on M such
that α is separating and β is non-separating arises as the inverse image of
a unique pair of generalized simple closed geodesics on M ′ as described
above, where the chosen ∆0 is the angle π cone point which is the image
under η of the Weierstrass point on M that lies on the same side of α
as β and is missed by β.

Summing all the six resulting Weierstrass identities, we then have

∑

2 tan−1 exp

(

−|α|
4

− |β|
2

)

=
6π

2
,

where the sum is taken over all ordered pairs (α, β) of disjoint simple
closed geodesics on M such that α is separating and β is non-separating.

q.e.d.

Proof of Addendum 1.15. We first prove that the series in (1.18) con-
verges absolutely and uniformly on compact sets in the space QF of
quasi-Fuchsian representations of π1(M) into PSL(2,C) by the same
argument as used in [2]. The identity (1.18) then follows by analytic
continuation since (a) each summand in it is an analytic function of the
complex Fenchel–Nielsen coordinates for the quasi-Fuchsian space (see
[27]), (b) the identity holds when all the coordinates take real values
(by Theorem 1.13) and (c) the space of quasi-Fuchsian representations
of π1(M) into PSL(2,C) is simply connected.
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As pointed out in [2] Lemma 5.2, by [16] Lemma 3, for any compact
subset C of QF , there is a constant k = k(C) > 0 such that

k lρ0
(γ) ≤ ℜ lρ(γ) ≤ k−1lρ0

(γ),

for all ρ ∈ C and for all essential simple closed curves γ, where ρ0 is a
fixed Fuchsian representation of π1(M) into PSL(2,C).

Since | tan−1(z)| ≤ 2|z| for |z| sufficiently small (actually, it is enough
if |z| ≤

√
2/2), we have for all except a finite number of pairs of (free

homotopy classes up to inversion of) disjoint essential simple closed
curves α, β on M such that α is separating and β is non-separating and
for all ρ ∈ C

∣

∣

∣

∣

tan−1 exp
(

− lρ(α)

4
− lρ(β)

2

)

∣

∣

∣

∣

≤ 2

∣

∣

∣

∣

exp
(

− lρ(α)

4
− lρ(β)

2

)

∣

∣

∣

∣

= 2 exp
(

− ℜ lρ(α)

4
− ℜ lρ(β)

2

)

≤ 2 exp
(

− k
( lρ0

(α)

4
+

lρ0
(β)

2

))

.

Thus, the series in (1.18) converges absolutely and uniformly on the
given compact set C of QF since the series

∑

exp
(

− k
( lρ0

(α)

4
+

lρ0
(β)

2

))

converges by Lemma 8.5. q.e.d.

10. Complexified reformulation of the generalized McShane’s

identity

In this section, we prove the unified version (1.22) of our generalized
McShane’s identity using complex arguments and interpret it geometri-
cally.

Two functions. First, we would like to define two functions G, S :
C3 → C as follows:

G(x, y, z) = 2 tanh−1

(

sinh(x)

cosh(x) + exp(y + z)

)

,(10.1)

S(x, y, z) = tanh−1

(

sinh(x) sinh(y)

cosh(z) + cosh(x) cosh(y)

)

.(10.2)

Here, the function tanh−1 is defined by (1.19), i.e., for a complex number
u 6= ±1, tanh−1 u is defined to have imaginary part in (−π/2, π/2] by

tanh−1 u =
1

2
log

1 + u

1 − u
,
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where log(·) assumes its main branch value, i.e., with imaginary part in
(−π, π]. Using this, it is easy to see that the two functions have also
the following expressions:

G(x, y, z) = log
exp(x) + exp(y + z)

exp(−x) + exp(y + z)
,(10.3)

S(x, y, z) =
1

2
log

cosh(z) + cosh(x + y)

cosh(z) + cosh(x − y)
,(10.4)

as used by Mirzakhani in [23]. (She uses different notations D,R as ex-
plained below.) Here, for a non-zero complex number u, log(u) assumes
its main branch value, i.e., with imaginary part in (−π, π]. We shall see
that both expressions of the functions are useful.

For x, y, z > 0, the geometrical meanings of G(x, y, z) and S(x, y, z)
are as follows. Let P(2x, 2y, 2z) be the unique (up to isometry) hy-
perbolic pair of pants whose boundary components X, Y, Z are simple
closed geodesics of lengths 2x, 2y, 2z respectively. Then, S(x, y, z) is
half the length of the orthogonal projection of the boundary geodesic Y
onto X in P(2x, 2y, 2z) and S(x, z, y) is half the length of the orthog-
onal projection of the boundary geodesic Z onto X in P(2x, 2y, 2z),
while G(x, y, z) is the length of each of the two gaps between these two
projections on X. We have therefore the identity

G(x, y, z) + S(x, y, z) + S(x, z, y) = x(10.5)

for all x, y, z ≥ 0. Note that the same identity holds modulo πi for all
x, y, z ∈ C.

Remark 10.1. The relations of our functions G, S with Mirzakhani’s
functions D,R are

G(x, y, z) = D(2x, 2y, 2z)/2,(10.6)

S(x, y, z) = x −R(2x, 2z, 2y)/2.(10.7)

The following lemma gives a mild extension of (10.5), without modulo
πi, which will be needed in the proof of Theorem 10.3 below.
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Lemma 10.2.

(i) For x, z ≥ 0 and y ∈ [0, π
2
],

G(x, yi, z) + S(x, yi, z)(10.8)

= x − tanh−1

(

sinh(x) sinh(z)

cos(y) + cosh(x) cosh(z)

)

.

(ii) For x, y ∈ [0, π
2
] and z ≥ 0,

G(xi, yi, z) + S(xi, yi, z)(10.9)

=

[

x − tan−1

(

sin(x) sinh(z)

cos(y) + cos(x) cosh(z)

)]

i.

The proof we have is a messy but elementary calculation; details can
be found in [30] Section 2.2.

Restatement of the complexified identities. Now, we can re-
state the non-cusp cases of Theorem 1.16 using the functions G, S de-
fined above. Recall that for each generalized simple closed geodesic δ,
we have defined in Section 1 its complex length |δ|, that is, |δ| = 0 if
δ is a cusp; |δ| = θi if δ is a cone point of angle θ ∈ (0, π]; and |δ| = l if δ
is a boundary geodesic or an interior generalized simple closed geodesic
of hyperbolic length l > 0.

Theorem 10.3. For a compact hyperbolic cone-surface M with all
cone angles in (0, π], let all its geometric boundary components be ∆0,
∆1, . . . ,∆n with complex lengths L0, L1, . . . , Ln respectively. If ∆0 is a
cone point or a boundary geodesic then

∑

α,β

G

(

L0

2
,
|α|
2

,
|β|
2

)

+
n

∑

j=1

∑

β

S

(

L0

2
,
Lj

2
,
|β|
2

)

=
L0

2
,(10.10)

where the first sum is taken over all unordered pairs of generalized simple
closed geodesics α, β on M such that α, β bound with ∆0 an embedded
pair of pants on M (note that one of α, β might be a geometric bound-
ary component ) and the sub-sum in the second sum is taken over all
interior simple closed geodesics β such that β bounds with ∆j and ∆0

an embedded pair of pants on M . Furthermore, all the series in (10.10)
converge absolutely.

Remark 10.4. We shall omit the proof of Theorem 1.16 in the case
where ∆0 is a cusp, for as remarked before, in the cusp case, the identity
(1.23) can either be proved similarly or be derived by considering the
first order infinitesimal terms of the corresponding identity (1.22) in
other cases.

Proof. We first show that our generalized McShane’s identities (1.8)
and (1.9) can be reformulated as (10.10) modulo convergence.
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First, suppose that ∆0 is a boundary geodesic of hyperbolic length
l0 > 0.

For a pair of interior generalized simple closed geodesics α, β which
bound with ∆0 an embedded pair of pants on M , we have directly by
definition that

Gap(∆0; α, β) = G

(

l0
2

,
|α|
2

,
|β|
2

)

.

For a pair of generalized simple closed geodesics α, β such that α
is a boundary geodesic and β is an interior generalized simple closed
geodesic and that they bound with ∆0 an embedded pair of pants on
M , we have by definition and the geometric meanings of G, S that

Gap(∆0; α, β) = G

(

l0
2

,
|α|
2

,
|β|
2

)

+ S

(

l0
2

,
|α|
2

,
|β|
2

)

.

For a pair of generalized simple closed geodesics α, β such that α is
a cone point of angle ϕ ∈ (0, π] and β is an interior generalized simple
closed geodesic and that they bound with ∆0 an embedded pair of pants
on M , we have by (10.8) with x = l0/2, y = ϕ/2, z = |β|/2 that

Gap(∆0; α, β) = G

(

l0
2

,
ϕi

2
,
|β|
2

)

+ S

(

l0
2

,
ϕi

2
,
|β|
2

)

.

Next, suppose that ∆0 is a cone point of angle θ0 ∈ (0, π].

For a pair of interior generalized simple closed geodesics α, β which
bound with ∆0 an embedded pair of pants on M , we have by definition
that

Gap(∆0; α, β) i = G

(

θ0i

2
,
|α|
2

,
|β|
2

)

.

For a pair of generalized simple closed geodesics α, β such that α
is a boundary geodesic and β is an interior generalized simple closed
geodesic and that they bound with ∆0 an embedded pair of pants on
M , we have by the analysis in Section 7 that

Gap(∆0; α, β) i

= 2i tan−1
sin θ0

2

cos θ0

2
+ exp |α|+|β|

2

+ i tan−1
sin θ0

2
sinh |α|

2

cosh |β|
2

+ cos θ0

2
cosh |α|

2

= G

(

θ0i

2
,
|α|
2

,
|β|
2

)

+ S

(

θ0i

2
,
|α|
2

,
|β|
2

)

.

For a pair of generalized simple closed geodesics α, β such that α is
a cone point of angle ϕ ∈ (0, π] and β is an interior generalized simple
closed geodesic and that they bound with ∆0 an embedded pair of pants
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on M , we have by (10.9) with x = θ0/2, y = ϕ/2, z = |β|/2 that

Gap(∆0; α, β) i = G

(

θ0i

2
,
ϕi

2
,
|β|
2

)

+ S

(

θ0i

2
,
ϕi

2
,
|β|
2

)

.

Finally, we prove the absolute convergence of the series in (10.10). It
is not hard to see from the above analysis that we only need to prove,
for each j = 1, . . . , n, the absolute convergence of the series

∑

β

S

(

L0

2
,
Lj

2
,
|β|
2

)

,

where the sum is over all interior generalized simple closed geodesics β
which bounds with ∆j and ∆0 an embedded pair of pants on M . The
desired absolute convergence follows from Lemma 8.5 since

S

(

L0

2
,
Lj

2
,
|β|
2

)

∼ sinh L0

2
sinh

Lj

2

cosh |β|
2

∼ const. exp

(

−|β|
2

)

as |β| → ∞ and there are only a finite number of interior generalized
simple closed geodesics β with |β| ≤ c for any give c > 0. q.e.d.

Geometric interpretation. We would like to explore the geomet-
ric meanings of the summands in the complexified formula (10.10). As
noted earlier, because of the complexification, the summands are no
longer necessarily real and positive, and so no longer admit interpre-
tations as simply gaps on the cone-surface. Indeed, one really needs
to think of the cone surface as being developed onto a totally geodesic
hyperplane in H

3 to interpret the summands properly.
In the case that M has no cone points, all its geometric boundary

components (here cusps are treated as boundary geodesics of length 0)
∆0, ∆1, . . . ,∆n are boundary geodesics with hyperbolic lengths L0, L1,
. . . , Ln respectively. Assume ∆0 is not a cusp, that is, L0 > 0. Then as
explained in Section 7, in the first sum, the summand is the width of
one of the main gaps in the pair of pants P(∆0, α, β) bounded by ∆0

and α, β; while in the second sum, the sub-summand is the width of one
of the two extra gaps associated to ∆j in the pair of pants P(∆0, ∆j , β)
bounded by ∆0, ∆j and β. We would like to think of the union of the
two extra gaps in P(∆0, ∆j , β) as the orthogonal projection of ∆j onto
∆0 along the common perpendicular δ of ∆j and ∆0 in P(∆0, ∆j , β)
and think of its width as the direct visual measure of ∆j seen at ∆0

along δ. Hence, the second part of the left-hand side of (10.10) can be
thought of as the total direct visual measure of all the non-distinguished
geometric boundary components ∆1, . . . ,∆n seen at ∆0.

In the case that ∆0 is a cone point of angle θ0 ∈ (0, π] (hence L0 =
θ0i) and all other geometric boundary components of M are boundary
geodesics (here, cusps treated as boundary geodesics of length 0), for
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each pair of generalized simple closed geodesics α, β which bound with
∆0 an embedded pair of pants P(∆0, α, β) on M , each of α, β has a
direct visual angle at the cone point ∆0; and the summand in the first
sum is i times the angle measure of one of the two gaps at ∆0 between
the two ∆0-geodesic rays asymptotic to α+, β−(respectively α−, β+ ).
The sub-summand in the second sum is i times half the visual angle
measure of ∆j at ∆0 in the pair of pants P(∆0, ∆j , β) on M .

If M has cone points other than ∆0, the formulations of the gener-
alized McShane’s identities (1.8)–(1.10) in terms of Gap(∆0; α, β) will
not be as neat as in the two special cases above. The problem lies in
that a cone point (other than ∆0) seems to have direct visual measure
zero at ∆0, causing the formulae to be non-uniform. However, this
non-uniformity is caused by the (wrong) point of view that we treat
a cone point as only a point. The correct point of view is (perhaps)
that a cone point (as a geometric boundary component) should be a
geodesic axis perpendicular to the surface at the very cone point when
the surface is developed into hyperbolic 3-space and hence, one should
use purely imaginary instead of real length for a cone point. Thus, the
visual measure of a cone point ∆j , j 6= 0 should be the visual measure
of the geodesic axis, and is in fact purely imaginary if ∆0 is a boundary
geodesic and ∆j a cone point! Similarly, the main gaps will now be
measured using the end points of the geodesic axis of the cone point
rather than the cone point itself, and will be complex rather than real.
The functions G(x, y, z) and S(x, y, z) are then really measuring the
gaps according to this point of view, see [30] Section 2.5 for details.
This interpretation is also exploited in our generalization of the identity
to classical Schottky groups in [29]. More generally, the point of view
of using complex translation length for an isometry of the hyperbolic
3-space is well discussed in details in [12] and [26].
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